
Multifaceted Consistency Checking of Collaborative
Engineering Artifacts

1st Michael Alexander Tröls
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Abstract—In modern day engineering projects, different en-
gineers collaborate on creating a vast multitude of different
artifacts such as requirements, design specifications and code.
While these artifacts are strongly interdependent, they are often
treated in isolation and with little regard to their semantical over-
lappings. Automatic consistency checking approaches between
these artifacts are rare and often not feasible. Therefore, artifacts
become inconsistent and the consequences are costly errors.

This work proposes a multifaceted consistency checking ap-
proach for different kinds of engineering artifacts, with the help
of a collaborative engineering platform. The proposed approach
enables engineers to automatically check the consistency of their
individual artifacts against the work results of other engineers,
without using different tools than the established ones of their
fields and without merging their artifacts with those of others.

Index Terms—collaborative engineering, engineering artifacts,
consistency checking

I. INTRODUCTION

Engineering is a complex process involving different en-
gineers from a multitude of varied disciplines. Each engi-
neer produces artifacts such as code, requirements, models,
hardware specifications and many more. The complexity and
number of these artifacts is constantly growing as engineering
projects become an increasingly important part of many dif-
ferent industries. A modern engineering project is no longer
just concerned with the details of, e.g., a software solution or a
mechatronical system – it acts as an inter-disciplinary process
incorporating the knowledge from many different areas such
as medicine, agriculture, logistics and more.

Likewise, the interdependendcy among engineering artifacts
is strongly increasing as well. With the engineering process
becoming more and more complex, the necessity to integrate
and propagate changes from highly interdependent artifacts
within a project becomes a more elaborate and time costly
endeavour. For example, if hardware specifications change, all
related engineering artifacts, first and foremost those using
the specified hardware, must propagate such a change in one
way or another. Frameworks may need to be updated, imple-
mentations might need to be adapted and designs may require
restructuring in the light of new technological circumstances.

This combination of complexity, high interdependency and
constant availability of the increasing amounts of engineering
artifacts, has made the maintenance of the involved informa-
tion a difficult task. As a result, keeping consistency among

engineering artifacts is a critical aspect of each engineering
project [1]. However, the available software solutions are
lacking in this regard. While a regular engineering project
may share its engineering artifacts among engineers in a
multitude of different ways, this is not a sufficient solution to
overcome the increasing complexity of the artifacts and their
interdependencies. Despite its major industrial importance and
constant reminders by the research community (e.g., [2]–
[9]), maintaining consistency among artifacts is treated as an
afterthought.

Therefore, this work proposes a novel, multifaceted way
of checking consistency between engineering artifacts within
a collaborative environment. The consistency checks are au-
tomatically triggered by changes engineers perform on their
aritfacts and happen under the consideration of the semantical
overlappings of the different types of engineering artifacts
involved in a project. This enables engineers to approach the
problem of the strongly interdependent nature of engineering
artifacts and simplifies the engineers’ task of maintaining their
work results’ consistency. We tackle the artifacts’ physical,
virtual and syntactical separation by synchronizing them into a
collaborative cloud environment, where they share a common
representation. There they can be arbitrarily linked to each
other, which allows us to establish semantical equivalencies
between the different artifacts. These links can subsequently
be used for consistency checking on the basis of a cloud
service and a set of user-determined consistency rules, which
are automatically checked on the synchronization of a change
with the cloud.

The rest of this paper is organized as follows: In Section II
we discuss the current state of collaborative engineering and
address problems that may commonly occur during modern
engineering projects. In Section III we introduce our approach
for tackling these problems. In Section IV we discuss details
on the realization of our approach. We conclude this paper
with a discussion of the approaches benefits in Section V.

II. PROBLEM STATEMENT

A single engineering project may involve a multitude of
different collaboration tools, many of which are used in



parallel. Such tools include repositories, e.g., Git1 or SVN2,
time planning tools, communication tools or various team
management solutions. Each of these tools incorporates en-
gineering artifacts in one way or the other. Artifacts may be
stored in a repository or shared through communication tools
- yet, while engineering artifacts are passed around through
and stored within these collaboration solutions, they are often
not truly integrated within the tool. A traditional repository,
for example, may store different engineering artifacts, but
does not offer ways to natively incorporate the relationships
between them. As a result, different engineering artifacts
remain logically isolated from each other, even when they
are virtually stored in the same space. This naturally makes
the maintenance of consistency among engineering artifacts
a highly complex task, as it has to be treated in an equally
separate way for each type of artifact. No true incorporation of
different engineering artifacts in a single consistency check is
feasibly possible. Yet lacking such consistency checking may
lead to a multitude of different problems. In the following
we discuss some of the most critical problems, as well as
other circumstances within current collaboration solutions that
hinder feasible consistency checking.

• Syntactic differences of engineering artifacts: Most
modern collaboration tools allow the storage of a single
type of engineering artifacts. For example most repository
solutions are text- respectively line-based and therefore,
mostly used for code. Different engineering artifacts, such
as design models, can technically be stored on these
repositories as well, however, their formats - especially
if they are stored in binary files - are often not natively
supported. As a result, meaningful analysis of different
engineering artifacts in one space is very difficult.

• Artifact interdependency: Despite the high interdepen-
dency between different engineering artifacts, collabo-
ration solutions often provide no way of properly rep-
resenting this circumstance efficiently. This complicates
the effort of maintaining consistency among artifacts,
as a consistency checker – even if it can interpret all
engineering artifacts – has no possibility of making use
of the semantic overlappings between different artifacts.
Therefore, similar concepts, represented in different kinds
of engineering artifacts, become isolated from each other
and the task of keeping them consistent might fall short.

• Limited collaboration techniques: Due to the large
variety of engineering artifacts, there is a limited support
for comprehensive, native integration within most col-
laboration solutions. While collaboration techniques like
merging or branching are common for text-based artifacts
– e.g., code in Git or SVN – such operations are not
possible for many other kinds of engineering artifacts.
For example, design models or circuit diagrams are rarely
meaningfully supported in this regard.

• Difficult merging process: Current collaboration so-

1Git: https://git-scm.com/
2SVN: https://subversion.apache.org/

lutions provide only limited conflict identification for
engineering artifacts. Once the work of one engineer has
to be integrated with the work of others, this may lead
to a difficult merging process. This may further lead to
unnecessary delays, which can become a crucial problem,
especially when the integration process of engineering
artifacts is tackled close to deadlines. As a result, hasty
resolutions may often be incorporated into the final
product, which potentially lead to severe errors.

• Refactoring efforts: When the merging process leads to
the identification of problems, the consequence is often
an extensive refactoring phase. Engineers may have to
carefully refactor their work into a state where it is con-
sistent with the work of others again. For example, both
design models and code of a software engineering project
may become out of sync, which makes it necessary to
update one or both sides, in order to keep the project’s
documentation up-to-date.

• Tolerated inconsistencies: It often occurs that even
though inconsistencies are identified during the merging
process, they are being tolerated to a certain extent. This
is, for example, done to simplify development processes
during engineering projects or out of organizational rea-
sons. However, at some point the identified inconsisten-
cies must be corrected. To guarantee this, not only the
identification, but the documentation of inconsistencies
is a critical task. Engineers must know which issues
arose in which context at what time to meaningfully
merge the final engineering artifacts and subsequently
remove the documented inconsistencies. Often, since
cross-documentation of different types of engineering
artifacts and their relationships rarely exist, the removal
of older inconsistencies is entirely based on the memory
of individual engineers. This, of course, holds massive
potential for errors in the final product, especially if
an engineering project has long development cycles or
engineers are replaced during the project. Consequently,
many undocumented inconsistencies remain hidden for
the rest of the development. As a result, costly errors
can end up in the final product, which are – if they are
detected at all – hard to fix.

• Error propagation: Artifacts which underly constant
changes by several engineers also produce constant con-
sequences for related artifacts. So, while a single change
may not cause an inconsistency in itself, the change may
lead to errors once it is propagated through into other
engineering artifacts. If that is the case, it is important
to know the exact change history of engineering artifacts
and the associated consistency state. Lacking the possi-
bility to fall back on such documentation diminishes the
possibility of identifying the original source of a problem.
Even if an inconsistency can be found, the unawareness
of its further consequences may nullify the attempt to
repair it and turn the repairs into sources of new errors.

• Symptomatic inconsistency repairs: Given that a con-
sistency checker finds an inconsistency, repairing the



inconsistency does not necessarily eradicate the problem.
If the inconsistency is correlating with previous changes,
the actual root of the problem can not be gotten rid of
by fixing the latest effect. As such, engineering projects
enter a cycle of fighting the symptoms of old, largely
invisible problems.

• Follow-up errors: Naturally, the practice of fixing symp-
tomatic problems can lead to follow-up errors. Especially
if later project specifications start to clash with the
original problem. These decisions may propagate through
one or several engineering projects for a very long
time, before the real problems are finally recognized. A
typical example of this are long lasting errors in software
solutions based on architectural mistakes. If the same
base architecture is re-used during the production of new
software, respectively new versions of same software, old
errors may lead to new work arounds and new errors.

• Late or no recognition of inconsistencies: If, at last, the
original problem causing an inconsistency is - perhaps
by chance - identified, the damage is most likely already
done. The effects are potentially immense costs, radical
changes of established systems or product lines and
possibly even legal consequences. This makes the early
recognition of inconsistencies - and thus the recognition
of correlating changes - not just a side issue, but an exis-
tential necessity for the smooth execution of engineering
projects.

As can be seen, the support of different engineering artifacts,
as well as the documentation of their relationships with each
other, is an important aspect of engineering. Yet, the current
landscape of collaboration solutions is severly lacking in
these regards. Therefore, the identification of inconsistencies
becomes very difficulty.

III. MULTIFACETED CONSISTENCY CHECKING

The issues discussed in Section II show a wide array of
different aspects that are affected or could be averted by a
multifaceted consistency checking approach fit for the growing
complexity, number and required availability of engineering
artifacts. As such, we suggest a consistency checking mecha-
nism featuring five core characteristics in this work:

• Cloud Deployment
• Global Constraints
• Live Capabilities
• Context Views
• Group Orientation

Each of these characteristics offers individual advantages for
the engineer, which are discussed in the following.

A. Cloud Deployment

To meet the requirement of constant availability, storing
engineering artifacts in a single, network-connected storage
space comes as a natural practice in most engineering projects.
Considering consistency checking, this means, that the respec-
tive mechanism could be deployed on such a storage, instead
of being run individually for each tool, on each machine

contributing to a project. The core issue with this is not the
technical limitation of data storage, e.g., by synchronizing
artifacts into a cloud environment. The problem is to natively
store them in an integrated way that allows us to handle
their complexity, especially with regards to their syntactic
differences. A consistency checker must either operate on a
single uniform engineering artifact representation or be able
to interpret all different engineering artifact formats that are
synchronized with the storage. Naturally the former is a more
feasible solution.

In this work we settle for a uniform artifact representation,
which can be further exploited for advantageous concepts that
aid us in tackling the complexity of engineering artifacts. In
fact, a core issue that encompasses many of the problems dis-
cussed in Section II is the syntactic difference of engineering
artifacts. While a multitude of artifacts is stored in various
textual representation (coding languages, plain text, HTML,
XML, etc) many others are, for example, stored in a binary
format (images, CAD drawings, etc). Regardless of their
format these artifacts share interdependencies and semantical
overlappings that need to stay consistent. A classic example
would be the names of a class diagram and its concrete
implementation in code. To keep these artifacts consistent
requires either a consistency checker that is able to read all
the involved formats and interpret them, or a transformation
of the artifacts into a single uniform representation in which
they can be read and analyzed on a syntactic common ground.
With such a uniform representation present, the deployment
of a consistency checker within a cloud environment becomes
both feasible and advantageous.

B. Global Constraints

One way to advantageously exploit the uniform represen-
tation of artifacts synchronized with the cloud environment,
is the possibility to represent their interdependencies in the
same abstracted manner. While engineering artifacts feature
many different semantic overlappings, the resulting interde-
pendencies between them are only rarely comprehensively
documented. Even with traceability being a common chal-
lenge for each engineering project, most tools concerned
with it, are limited to parallel representations of the matter
in further separate tools. The approach presented in this
paper suggests a more integrated way of representing the
interedependencies of artifacts. In our approach we represent
semantic overlappings, respectively the interdependency of
engineering artifacts, through the manipulation of the uniform
artifact representation directly in the artifact storage space.
This allows us to arbitrarily extend the engineering artifacts
with additional meta-information, e.g., the relationship to other
artifacts. If, for example, a certain piece of code realizes
a certain UML diagram, this relationship can be expressed
through the addition of a simple link on the respective code
artifact, pointing towards the uniform artifact representation
of the UML diagram artifact. Alternatively, a new artifact can
be created which then points towards both the code and the
UML artifact as source and target respectively.



These links can then be used by the consistency checker to
analyze the impact of an engineering artifact’s change beyond
the boundaries of a single discipline. This can be done by
formulating consistency rules in a way that builds on the
uniform artifact representation and therefore utilizes the links
that can be set therein. This gives engineers the possibility to
implement global constraints for entire engineering projects,
which can be applied in multiple scenarios, from model-code
consistency checking, to checking the integrity between im-
plementation and corresponding circuit diagrams ( [9], [10]).

C. Live Capabilities

To prevent the late recognition of inconsistencies and to
tackle the aspect of ever changing artifacts having an impact
on artifacts related to them, a consistency checker capable of
reacting live towards changes becomes a necessity. Exploiting
the cloud deployment and the uniform artifact representation
therein can help tackle this problem. As a single, cloud-
based consistency checker, familiar with the uniform artifact
representation can be responsible for all engineering artifacts
within an engineering project, the computation of consistency
states can be entirely server sided. This way consistency
checks can be done in parallel to engineers working. Their
work is not interrupted. At the same time, the server-sided
computation can apply load-balancing strategies that help
minimizing the computation time for a consistency check. As a
result consistency feedback can be given through the network
directly to the engineers, live as they synchronize their artifact
changes with the cloud. Immediate feedback of such nature
can be utilized to foster a more team-driven approach towards
error handling, as well as awareness of collaborative activities
within the team of engineers [8].

Handling the amount of computations and feedback is no
trivial task in this context. The organization of the cloud’s
artifact storage into several substorages can be advantageous in
this context. In this work we apply both a private and a public
work area - the earlier holding only work of a single engineer,
which is then pushed to the latter and made publicly available
for every engineer using the cloud environment. Every change
within one of the substorages fires an event. Feedack that is
not related to a certain work area can easily be filtered out
for the connected engineer. Further our data model allows us
to minimize the number of (necessary) executed consistency
checks. This adds to the scalability of our consistency checking
approach.

D. Context Views

An engineer’s work can always be regarded in two different
consistency contexts: By itself - e.g., code corresponding to
certain syntax - and integrated with the work of others - e.g.,
code corresponding to UML designs. To prevent merging con-
flicts as well as extensive refactoring processes, our approach
can regard the consistency state of an engineer’s work from the
context of a private work area. This way, the engineer’s work
is projected on top of publicly available engineering artifacts.
The consistency checker can then deliver information on what

would be the consistency state of both the private and the
public artifacts, would the engineer decide to push his work to
the public area. Since feedback can be given live, the engineer
can always be aware of this information.

E. Group Orientation

Adding on top of context views, multifaceted consistency
checking can also regard the consistency of engineering arti-
facts within a group context. Then the engineers’ work, held
in their private work area, is not primarily projected on top
of publicly available artifacts, but on top of the work present
within a group of other private work areas. The consistency
state computed from this context allows engineers to be aware
of their work’s consistency integrated with the ongoing work
of other engineers. This further prevents a complex merging
process as conflicts can be detected before engineers decide
to make their engineering artifacts publicly available.

IV. REALIZATION

The approach discussed in this work is a live consistency
checker of global consistency rules, representing the inter-
dependent aspects of engineering artifacts. It reacts towards
the synchronization of artifact changes onto a collaborative
engineering cloud environment, where all engineering artifacts
are stored in full or partially. The snychronization is handled
by tool adapters, which are used with the regular engineering
tools the engineers use in their respective fields. Our approach
has no need of switching tools. Engineers may work with
what they already know. In this Section we outline how
the approach tackles the problems discussed in Section II,
respectively the concepts discussed in Section III with regards
to their realization.

A. Uniform Data Representation

A problem that has to be adressed before realizing multi-
faceted consistency checking of varied engineering artifacts,
is the equally varied landscape of different artifact formats.
A large portion of engineering tools store their outputs in
unique data structures, respectively file formats. This is a major
hurdle, when it comes to the meaningful integration of engi-
neering artifacts in a single storage space and subsequently, the
analysis of their semantically overlapping aspects. Therefore,
this approach applies a uniform data representation, into which
engineering artifacts - or parts thereof - are transformed,
before they are stored in a cloud environment. This allows
a cloud service to analyse the stored data, without knowing
the specifics of the original artifact format.

The uniform data representation engineering artifacts are
transformed into, is a typed, uniquely identifieable mapping
of named values with timestamps. These named values are
refered to as properties. A single property always contains a
list of values, which represent the property’s change history.

Every artifact in the cloud environment is created according
to a corresponding type. Such types can either be created
manually by users, or automatically by tool adapters (e.g.
during the adapter’s initialization process). Further, the type



Fig. 1. Exemplary types and instantiations for requirement artifacts.

contains a set of definition fields that describe the name, cardi-
nality and primitive data type of an artifact’s properties. Once
artifacts are synchronized with the cloud environment, the type
is automatically instantiated and the respective properties are
filled with values. The mapping process is done on the side
of the synchronizing engineering tool, with the help of a tool
adapter - which can be written as a plugin, using the cloud
environment’s API.

The data representation is willfully kept abstract to allow the
biggest possible number of different engineering artifacts to be
stored in the cloud environment. A figurative transformation
of engineering artifacts can be seen in Figure 1, where a
requirement type is present in the cloud environment and two
instances have been created with corresponding values.

B. Linking

To represent the interdependencies between different en-
gineering artifacts, the applied uniform data representation
allows us to link different engineering artifacts together, by
referencing their unique identifier within a property. This
way, semantical overlappings between engineering artifacts
from different fields, can be easily expressed. In the current
approach, the linking process is handled manually - however,
automated approaches can easily be deployed on the cloud
environment in the form of a further service. The linking tool
used in this approach can be seen in Figure 4, showing an
overview of the artifact structure, as well as a detailed view
on a selected artifact. The links themselves can be set as
simple references on artifacts, or be instantiated as artifacts
themself - with source and target properties pointing towards
the respective linked engineering artifacts. This allows our
approach to apply different link types and enhance them with
further meta-information. Such structures can again be used by
a consistency checker for the analysis of relationships between
artifacts. Furthermore, the timestamped history of property

values gives information on which artifacts were linked to-
gether at what point in time, which automatically documents
re-arrangements within the relationships of artifacts.

C. Artifact Storage

Once artifacts are transformed into a uniform representation,
they can persistently be stored in the cloud environment.
More precisely, the artifact storage stores a set of property
changes, the sum of which describes the full representation
of an artifact. The artifact storage itself is separated into two
types of work areas.

• Public Work Area: There is only a single public work
area in the cloud environment. Engineers can push their
changes into the public work area, once they are done
editing them in their respective private work area. The
public work area can be accessed by any engineer at any
time. It acts as the root within a hierarchy of work areas.

• Private Work Area: There are several private work areas
within the artifact storage. Each tool adapter synchroniz-
ing engineering artifacts with the cloud environment is
bound to a single, unique work area. When synchronizing
an engineering artifact, the private work area only stores
a change, respectively a delta of the artifact with respect
to the publicly already available information on the said
artifact. This restricts the contents of the private work
area to a relatively small set of changes. The private work
areas can be parented to each other, with the public work
area always acting as the highest parent. The parenting
concept allows us to provide specific, change-oriented
views on engineering artifacts. Tool adapters, retrieving
engineering artifacts from the cloud, always receive the
changes they synchronized with their bound private work
area projected on top of whatever artifact information is
available in the private work area’s parents. An example
for such information retrieval can be seen in Figure 2,
where the public area of the artifact storage contains
an instance of a ”Robot Arm” engineering artifact, de-
scribing length and variant of the hardware. From the
perspective of private work area “WA1”, the robot arm
has the length of 0.75 meters, since its contents are
projected on top of the information within the public
area. Work area “WA2” on the other hand still retrieves
the length as 1.00 meters. If requested properties cannot
be found within a private work area, they are retrieved
from the parents - in this case the public work area.
Vice versa “WA1” can not retrieve the latest name and
variant description of the robot arm, as changes on these
properties are only available within work area “WA2”.

Since many engineering projects are organized in develop-
ment teams, the artifact storage also allows for the grouping
of work areas. These groups can be established by the users
and alter the data retrieval process. When a property can
not be found within a grouped private work area, the cloud
environment will first check the other work areas within the
group instead of the private work area’s direct parents. If the
property is found in multiple members of the work area group,



the cloud environment retrieves the latest version of it, based
on its value’s timestamp. This way - when a full artifact is
retrieved from the artifact storage - the changes of a private
work area are first projected onto whatever relevant properties
can be found within the group, which are then projected onto
what can be found in the public work area. Coming back to
Figure 2, would “WA1” and “WA2” be grouped together, the
latest name and variant changes - present in “WA2” - could
be retrieved from the perspective of work area “WA1”. Vice
versa, the latest length - present in “WA1” - could be retrieved
from the perspective of work area “WA2”. Property duplicates
would have no effect, since there are only two work areas
and the work area from whose perspective data is retrieved
overrules the group.

D. Live Services

With engineering artifacts being persisted within the artifact
storage, our approach can now access the said storage to ana-
lyze and potentially alter its content. This is done through live
services, which are running in parallel to the cloud’s activities.
Every cloud activity, for example the synchronization of a
change, triggers a corresponding event, which can be listened
to by the services. As a result, every service can immediately
react towards changes synchronized by the engineers. This
holds the advantage that it allows us live consistency checking,
which supports the effort of keeping inconsistent states of an
engineering project as short as possible, and which prevents
the late recognition of engineering artifact inconsistencies.

E. Consistency Checking

With the discussion of the problems listed in Section II
the importance of comprehensive consistency checking be-
comes very clear. Maintaining consistency and keeping the
complexity of engineering artifacts in check is a critical aspect
of every large engineering project - not just for the sake of
documentation, but to ensure a level of quality in the final
product by preventing unnecessary flaws. Our approach builds
on the cloud environment’s concepts introduced beforehand.
As such our consistency checking approach is implemented in
the form of a live service. It listens to changes synchronized

Fig. 2. An overview of an artifact as represented in the context of a work
area hierarchy.

Fig. 3. Tool adapters synchronize artifacts with private work areas, from
where they can be pushed to the public area. The artifact storage is observed
by the consistency checker, which provides feedback to the tools.

with the artifact storage, analyses these changes for their rele-
vancy and re-evaluates the altered artifacts in parallel to other
cloud activities. The results are fed back to the users through
their tool adapters. This process is illustrated in Figure 3. This
section goes into detail on the specifics of the consistency
checker’s data model within the cloud environment, as well as
its concrete functionality whenever a change happens within
the artifact storage.

1) Data Model: To realize the consistency checking ser-
vice, our approach fully utilizes the uniform data repre-
sentation by creating its own artifact types as well as the
corresponding instantiations for them. This first and foremost
comes with the advantage that the service handles its own
documentation as it stores its results - which in themselves
are engineering artifacts again - alongside other engineering
artifacts. It references the concrete values that lead to the
stored results and offers information on the involved artifacts.

For the storage of its own internally used data, the consis-
tency checker creates two different engineering artifact types:

• Consistency Rule Definiton Artifact: A Consistency
Rule Definition Artifact defines a certain rule for a single,
specific artifact type. It contains a name, a description,
a reference to the specific type artifact and the concrete
rule in a simple string, each of which are provided by an
engineer. Every time an instance of the type is created, the
consistency checker automatically realizes the definition
in the form of a Consistency Rule Evaluation Artifact.

• Consistency Rule Evaluation Artifact: A Consistency
Rule Evaluation Artifact realizes a consistency rule def-
inition for the instantiation of a certain artifact type.
For example, if an engineer creates a Consistency Rule
Definition Artifact for a requirements artifact type, as
seen in Figure 1, every instantiation of the requirement
type (ID:35 and ID:36) will receive its very own Con-



sistency Rule Evaluation Artifact. This artifact contains a
reference to its definiton, a reference to the artifact type
instantiation (the so called context element), the latest
consistency checking result of this Evaluation Artifact
and a so called scope, which keeps track of all properties
involved in the computation of the result.

Both of these artifact types, respectively their instantiations
are utilized during the consistency rule evaluation process.
Within this process the Consistency Rule Definition Artifacts
have an organizational role, while the Consistency Rule Eval-
uation Artifacts are concerned with documenting the results.
The consistency rules themselves are stored as a string that is
parsed and executed during the evaluation. These strings have
the following structure:

Conjunction(Operator(ExpressionA,ExpressionB)1...*)

Expression pairs are compared via operations. Many opera-
tions can be connected into a logical conjunction, formalizing
the full rule. The expressions themselves are held in an OCL-
like language3, which describes the navigation path from a
context element towards a certain property value, based on the
uniform artifact representation. Consider again the structure
of the requirements artifact in Figure 1 and the following
expression:

self.@type.TypeName

This expression, for example, would retrieve the name of the
context elment’s type (the context element is always the first
point of reference within a rule and refered to as “self”). The
result sets of two of such expressions would be compared
via the enclosing operation. In our approach we implemented
regular operations (equals, greater than, etc) for both sets and
single values. A set of values may be retrieved when the
cardinality of a property is defined accordingly in the artifact
type’s field definitions.

2) Rule Evaluation: Our consistency checking approach
reacts immediately towards changes synchronized within the
cloud environment’s artifact storage. In the following we
discuss every step from the fired change event to the concrete
consistency state results.

• Change Analysis: When engineers perform a change
within their tools, the corresponding tool adapter trans-
forms the change into a form that can be incrementally
added onto the uniform data representation. This change
is then uploaded to the cloud environment and stored
within the artifact storage on the respective artifact’s
property. Each change fires a change notification event,
which can be listened to by the cloud’s live services.
The change notification event contains information on the
identifier of the corresponding artifact, the name of the
changed property, the nature of the change (Creation, Up-
date, Deletion), as well as the new value of the property.
This way, the consistency checker receives all required
changes performed on the synchronized artifacts and can

3OCL: https://www.omg.org/spec/OCL

immediately react by computing a new consistency state.
Naturally, not every single change is relevant, nor would
it be performant to re-evaluate with every change noti-
fication event. Therefore, the consistency checker only
reacts towards three types of change events:
a) Creation of an artifact: When an engineer creates a
new artifact in the cloud environment, the consistency
checker must first analyze whether the type of the created
artifact is referenced in an existing Consistency Rule
Definition Artifact. If that is the case, the service au-
tomatically creates the corresponding Consistency Rule
Evaluation Artifact and sets the context element.
b) Update of a scoped property: When an engineer
changes an existing artifact, the cloud environment stores
this change on the respective property and fires a cor-
responding change notification event. To minimize the
number of consistency rule re-evaluations, the consis-
tency checker only reacts towards changes on properties
that are part of a scope. This is possible, since a scope
(which is built during the first re-evaluation of a Consis-
tency Rule Evaluation Artifact) references all properties
that are relevant for a consistency rule. Naturally, when
one of these scoped properties changes, the Consistency
Rule Evaluation Artifact containing the scope must be
retrieved.
c) Deletion of an artifact: When an engineer deletes an
artifact, the cloud fires a corresponding change notifi-
cation. The consistency checker then analyzes whether
the deleted artifact was a context element or referenced
through a scoped property. If the earlier is the case, the
corresponding Consistency Rule Evaluation Artifacts are
removed as well. If the latter is the case, the correspond-
ing Consistency Rule Evaluation Artifacts’ results are set
to “invalid” until a change on a related scope element
(referencing the deleted artifact) triggers the re-evaluation
process again.
The created, respectively retrieved Consistency Rule
Evaluation Artifacts are marked down for “Data Gath-
ering”. The following steps must be executed for each
Consistency Rule Evaluation Artifact individually.

• Data Gathering: For the data gathering process, the con-
sistency checker first retrieves the stored consistency rule
from the Consistency Rule Definition Artifact referenced
in the Consistency Rule Evaluation Artifact. The said rule
must then be parsed. Each step within the rule represents
a navigation step through the artifact structure, starting
at the context element. Each part of an expression refers
to a certain property on a certain artifact. The navigated
artifacts, respectively their properties are stored within the
scope. Once a full expression has been navigated through,
the final results (the property values of the last step) are
marked down for the “Rule Evaluation” process. This is
done for every expression within the rule.
It should be noted, that when work area groups exist
within the artifact storage, this step is slightly different. If
a property can not be found within a work area, it is first



looked for within the group. If more than one result can
be found (i.e., if more than one work area has changed
the property) these are compared via their timestamp. The
latest version of the respective property is retrieved. If the
property can not be found in the group, the consistency
checker falls back on the work area’s parent hierarchy
and eventually the Public Work Area.

• Rule Evaluation: For the concrete rule evaluation pro-
cess, the gathered property values are substituted for
the consistency rules expressions and the encapsulating
operations are executed. The resulting boolean values are
connected in the overall logical conjunction. The boolean
result of this conjunction denotes whether the consistency
rule holds or not.

• Storing Results: Once a rule evaluation result has been
computed, the said result must be stored within the arti-
fact storage for the documentation of consistency states.
In our approach, the result is stored as a simple change on
the according property of the corresponding Consistency
Rule Evaluation Artifact. This change is of course only
stored within the context work area that triggered the
original rule re-evaluation. Once the change is pushed to
the public work area, the latest result is simply added on
the corresponding artifact’s result property with a new
timestamp. With the help of timestamps the history of
consistency states is stored within this property.

• Providing Feedback: Once the result is added to the
Consistency Rule Evaluation Artifact a new change noti-
fication event is fired within the cloud environment. This
change event can be used by further live services that
provide detailed feedback. Such feedback can then be
provided to the engineers by contacting the tool adapter
plugin bound to the work area, for which the latest re-
evaluation was conducted. Alternatively tool adapters can
simply listen to change notification events based on the
Consistency Rule Evaluation Artifact type. This way,
engineers will immediately be notified if their work area,
respectively the changes therein, are in a new consistency
state. This information can then of course be used for
further visualizations by the tools. For example, potential
inconsistencies can be marked on the according engineer-
ing artifacts (e.g. classes within a UML diagram that
do not correspond to a naming convention, formulated
in a rule definition, could be colored red - the concrete
realization of feedback is up to the tools themself).

V. DISCUSSION

The application of multifaceted consistency checking on
different engineering artifacts comes with several benefits.
However, it also comes with the drawback that engineering
artifacts must first be transformed into a syntactically equiv-
alent form. This means additional effort for programmers -
implementing tool adapters - as well as domain experts - con-
sulting the programmers during the implementation process.
We believe, that the benefits are well worth the additional
effort, as the uniform data representation also allows engineers

to perform arbitraty enhancements on their data, e.g., through
the addition of properties (or referenced artifacts) holding
meta-information. In the case of the consistency checker,
such added information would be the consistency states of an
engineering artifact, which add further to the documentation
of an engineering project.

This flexible way of adding information helps us tackle the
complexity of the growing number of engineering artifacts, as
it also allows us to document the various interdependencies
between artifacts in a single location. In our approach this is
done via a specific cloud tool, which can be seen in Figure 4.
Further the uniform artifact representation allows the sharing
and merging of engineering artifacts in a fine-grained way that
is not possible in most modern collaboration solutions. This
simplifies the integration process of one engineers work with
the work of other engineers.

The consistency checker, with its ability to check the
consistency of private changes against public knowledge (as
the earlier are projected on top of the latter), allows engineers
to stay consistent with the work that has already been done
and simplifies the eventual merging process. With the work
area grouping mechanism this advantage can not only be
drawn from public knowledge, but from knowledge about
the private changes of other engineers as well. This way,
engineers are notified about inconsistencies in their work,
before a merging process even starts. This minimizes potential
refactoring efforts and prevents late recognition of major
conflicts in ongoing work.

Since the consistency checker, respectively its Consistency
Rule Evaluation Artifacts, keeps track of the consistency
state history of a certain engineering artifact, the consistency
checker provides documentation for temporarily tolerated in-
consistencies within a project, which may otherwise be for-
gotten and go unnoticed until the final product.

With an overview over the fully connected, navigatable
artifact structure of an engineering project, the consistency
checker can further help tracking down the origin of various
errors, as it keeps track of all engineering artifacts that are
involved in the computation of a consistency state. This helps
engineers to avoid symptomatic inconsistency repairs and
potential follow-up errors.

All in all, consistency checking in a cloud environment
provides several highly advantageous aspects. We believe,
these aspects outweigh the additional effort of writing custom
tool adapters, as our approach can help us tackling some
of the major issues arising through the constantly increasing
complexity and number of engineering artifacts in a modern
engineering project. Further, a range of tool adapters has
already been implemented, such as Java Eclipse4, IBM Ra-
tional Software Architect5 (for UML), Microsoft Excel (for
calculations), Creo6 (for CAD Drawings), Eplan Electric P87

4Eclipse IDE: https://www.eclipse.org/
5IBM RSA: https://www.ibm.com/developerworks/ down-

loads/r/architect/index.html
6Creo: https://www.ptc.com/de/products/cad/creo
7EPlan: https://www.eplanusa.com/us/2/



Fig. 4. An overview of the linking tool used in this approach. Both a part
of the full artifact structure as well as a detailed view of a link artifact are
depicted.

(for electrical layouts), and others. Our approach has been
evaluated in multiple ways. There has been an empirical study
with regards to its computational feasibility [9]. Further, two
case studies have been conducted to evaluate its applicability
within different engineering projects ( [10], [11]), as well as
within an industrial environment [10].

VI. RELATED WORK

While a multitude of consistency checking approaches exist
in the current landscape of engineering solutions (e.g., [2]–[7])
most of them do not consider the core aspect of this work,
which is the multifaceted application of the mechanism on
a varied set of different engineering artifacts. Nevertheless,
individual concepts of this work have been the focus of various
research efforts in the past. Consistency checking itself, as
well as the collaborative aspect of engineering, with the
strong interdependency between various engineering artifacts
in mind, have gotten attention in various works.

Some consistency checking approaches rely on the par-
tial merging of metamodels to incorporate different model
elements with each other. This way they can check consis-

tency on the overlapping, respectively interdependent parts
of engineering artifacts without performing a full integration.
Koenig et al. [12] considered various engineering artifacts
by incorporating individual model elements of heterogeneous
multimodels. These elements were then compared on the basis
of global constraints. Minimizing the set of compared elements
significantly lowers the efforts required for the matching
and merging process between different types of artifacts.
The rest of the artifacts - which did not overlap with other
artifacts - were checked as locally as possible. Likewise,
Sabetzadeh et al. [13] proposed global consistency checking
by the partial merging and the comparison of metamodels.
For their approach they provided merging operations for
requirements, behaviour models, design and implementation.
Contrary to these two approaches, our approach transforms
existing engineering artifacts into a different format, which
can be arbitrarily linked. This is a very lightweight alternative
to the sometimes extensive effort of model merging.

Collaborative approaches towards model-driven engineering
have also been the focus of various works [14]–[20]). A
mapping study conducted by Franzago et al. [21] documented
available solutions for collaborative modeling, which showed
that only very few approaches allow for the editing of model
artifacts in an asynchronous way. A live capability for various
applications, such as a consistency checker, is partly hindered
by this fact. This issue is overcome by our application of a
collaborative engineering cloud which directly integrates the
consistency checker and forwards activity events towards it.

Another major way in which our approach deviates from
related work is the fact that its live change-adaptive capabilities
are based on live synchronization through a tool plugin. This -
depending on the concrete plugin - means that our consistency
checker is reacting live towards changes directly handled in
the engineering tools, which are immediately propagated to
the cloud environment. This way, the cloud always receives
engineering artifacts directly from the internal data structure
that is present within the tool itself, which is in contrast to most
other approaches. In most consistency checking approaches
the engineering artifacts are synchronized from a file- respec-
tively document-base. One such approach was developed by
Aldrich et al. [22]. In their approach architecture description
language was coupled with the concrete implementation in
a Java project. It utilizes a type system guaranteeing the
integrity between architecture and code. Similarily Ubayashi
et a. [23] secures the integrity between architectural design
and code, by providing both a programming interface, as well
as a description language for architectures. In their approach,
architectural constraints within the implementation guarantee
the traceability and integrity between model and code. An
approach that also considers the aspect of artifact availability
was suggested by Nentwich et al. [24]. In it, XML-based
engineering artifacts are checked for consistency after links
have been generated between them. The artifacts are web
distributed, which is in contrast to our own approach which
centralizes artifacts in a single storage place.



VII. CONCLUSION & FUTURE WORK

In this paper we discussed the various aspects of modern day
collaborative engineering and the major problems that arise
through the constantly growing complexity in engineering arti-
facts as well as with their number and required availability. To
tackle these problems, this work introduced the novel way of
multifaceted consistency checking within an engineering cloud
environment. In contrast to most related work, our approach
takes the diverse nature of strongly interdependent engineering
artifacts into account, by synchronizing them into a single
space and offering a way to represent their relationships. These
relationships can then be exploited for consistency checking.
Our approach further takes full advantage of the cloud envi-
ronment’s structural concepts. Thanks to this, the results of
a consistency state computation are directly integrated with
the rest of the engineering artifacts, which further adds to
the documentation of an engineering project. The consistency
checking mechanism itself strongly builds on the availability
of various work areas within the cloud environment. It takes
advantage of various context views on engineering artifacts.
These views can be constructed by combining different work
areas during the data gathering process of the consistency
checker, e.g., in the form of a parent hierarchy, where the
changes of one work area are projected on top of other
changes – or in the form of work area groups, where the
latest version of a certain property within a group is retrieved
for the consistency check. We concluded this paper with a
discussion of various benefits of our approach, as well as with
a discussion of the related work.

For future work we would like to expand on the mechanism
for distributing consistency feedback. Currently a lot of consis-
tency feedback is produced, not all of which may be interesting
to the engineers. Therefore, we would like to introduce a
way of propagating only information that is relevant to the
engineers’ current focus.
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